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Chapter 1

Introduction

Literature: Gortz-Wedhorn: Algebraic Geometry I and II
The goal of this lecture is a brief introduction to the theory of group schemes.

Definition 1.1 (Group object). Let C be a category with finite products. A group object in C
is the data (G, m,e,i) where

e (G is an object of C
e m: G X G — G is the multiplication map
e ¢: 1 — @ is the unit
e i: G — G is the inversion map
such that the following diagrams commute

GxGxG ™Y axa GxG " @ BULLNYeINYe:

Jiaxem [mo ] / and T [m

m

GxG ———— G Gx1 11— 5 G

G is called commutative, if additionally the diagram

GxG % Gx@

m
m
G
commutes.

A morphism of group objects (G,m,e,i) = (G',m’,¢e’,i') is a morphism f: G — G’ in C such
that the diagrams

axa 2 o xo BEANYCT e QR ENYe7

Rz

¢ —1—a ¢ 1o

This defines the category Grp(C) of group objects in C.
Example 1.2. e Grp(Set) ~ Grp

e Grp(Grp) ~ Ab

e Grp(Ab) ~?
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e Grp(Top) ~ topological Groups
e Grp(M fdw) ~ Lie Groups

Definition 1.3 (group scheme). Let S be a scheme. An S-group scheme or an S-group is a
group object in the category of schemes over S.

Remark 1.4. Let S be a scheme. The structure of a group scheme over S on a S-scheme G is
equivalent to a factorisation of the functor of points

Schg —— Set

s
G;p
via the forgetful functor from groups to sets.
Example 1.5. Let S be a scheme.
(i) Let I" be a group. Then G =I's where G(T') = { locally constant maps 7' — I" }
(ii) (additive group) G, s where G, s(T) = Or(T). We have G, g ~ A}.

)
(iii) (multiplicative group) G, s where G,, s(T) == Op(T)*.
(iv) (roots of unity) pn s (n > 1) where p, s(T) = {z € Op(T)* | 2™ = 1}.
)

(v) S = Spec(R). GL, p = Spec(A) where A = R[Ti; | 1 < i,j < n][det™"] where det =
> oes, 580(0)T15(1) * + Tho(n)- We obtain GL,, s by base changing GLy, 7.

Lemma 1.6. Let G be a S-group. Then G — S is separated if and only if S < G is a closed
TMIMETSLON.

Definition 1.7. Let R be a ring. A (commutative) Hopf-Algebra over R is a group object in
Alg?, where Algp = CRingp.

Remark 1.8. For a R-Hopf-Algebra A, we denote the canonical maps by
o u: A— A®p A (Comultiplication)
e ¢: A — R (Counit)
e 1: A— A (Antipode)
A Hopf-Algebra is called cocommutative, if the associated group object in Alg}’ kommutativ ist.

Remark 1.9. For a ring R, by construction we have an equivalence of categories between the
category of affine R-group schemes and the opposite category of R-Hopf-Algebras.

Example 1.10. The additive group G, r = Spec(R[t]) has
e comultiplication p: R[t] = R[t] @r R[t],t —t®1 -1t
e counit e: R[t] = R,t— 0
e antipode ¢: R[t] — R[t],t — —t
Proof. For any R-algebra A we have G, r(A) = A and the diagram

Ga,R(A) X Ga,R(A) # Ga,R(A)

: §

5

Homp(R[s1, s2], A) ——— Homp(R]t], A)
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Definition 1.11. Let G be a S-group. A subgroupscheme of G is a subscheme H C G such that
1) for all T € Schg, we have H(T') C G(T) a subgroup,

2) We have commutative diagrams

HxgH — GxsG 25 G
/ and

H

G

7

A subgroup scheme H C G is normal if H(T) is a normal subgroup of G(T) for all T € Schg.
For a morphism f: G — G’ of S-groups and a subgroup H' C G’, let f~'(H') be G x[; H.
For H =15 @', we obtain the kernel of f and the cartesian square

T 4--- W

Ker(f) — G

L

P e Vel

Remark 1.12. The kernel of a homomorphism f of S-groups is for any S-scheme T' given by
Ker(f)(T) = ker (f(T)) .

In particular, the Ker(f) is normal.

Definition 1.13. Let G be a S-group, T' a S-scheme and g € G(T') = Homg(T, G). Define the
lefttranslation by g as

GT ;TXTGT

|
ity lgxid
~

GT o GT X7 GT

Remark 1.14. In the situation of 1.13, for every T” ER T, the map
ty(T"): Gp(T") = G(T") — G(T") = Gr(T")
is the lefttranslation by the element f*(g) € G(1”).

Remark 1.15. Consider
G Xs 8,%’_}(9%@ Xs G

G

Let P be a property of morphisms stable under base change and composition with isomorphisms.
Then whenever G — S satisfies P, then m satisfies P.
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1.1 Useful statements on schemes

Let k be a field.

Definition 1.16. Let P be a property of schemes over fields. For a k-scheme X we say X is
geometrically P if for all field extensions K/k the base change Xx — Spec K is P.

Example 1.17. The R-scheme X = Spec (R[z]/(z? + 1)) is irreducible but not geometrically
irreducible.

Proposition 1.18. For a k-scheme X the following are equivalent:
(i) X is geometrically reduced
(ii) for every reduced k-scheme Y, the fibre product X X Y is reduced.

(iii) X is reduced and for every generic point n € X of an irreducible component of X, the field
extension k(n)/k is separable.

(iv) There exists a perfect field 2 and an extension Q/k such that Xq is reduced.

(v) For all finite and purely inseparable field extensions K/k, the base change Xy is reduced.

Proof. Reducedness is a local property, so without loss of generality X = Spec A. Moreover
we may assume that X itself is reduced. Let {n;},.; be the set of generic points of irreducible
components of X. Then we obtain an inclusion

A— H Kk(n;) -
i€l

[3

We claim that for any field extension L/k the ring A ®j L is reduced if and only if for all ¢ € T
the ring k(n;) ® L is reduced.

proof of the claim. (=): follows since forming the nilradical commutes with localisations. (<):
We have

AR, L — (H n(m)> Qr L — Hn(m) Qp L.
iel iel
O
The claim immediatly implies the equivalence of (iii), (iv), (v) and (1). Since (ii) trivially

implies (i). It remains to show that (iii) implies (2). Without loss of generality we may take
Y = Spec B and set {A;};ecs to be the generic points of Y. Then we obtain

AgpB— Aayp | [[r(N) | = (H n(m)) @ | []r) | < [1rm) @k ;)

jeJg iel jeJ i e

Corollary 1.19. If k is perfect, then reduced and geometrically reduced are equivalent.

Remark 1.20. The statements in 1.18 also hold when reduced is replaced by irreducible or
integral.

Proposition 1.21. Let f: X — Y be a morphism of schemes that is locally of finite presentation.
Then f is open if and only if for every point x € X and every point y' € Y with y = f(z) € {y'}
there exists ¢’ € X with x € {x'} such that f(z') =y'.
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Proof. Assume X = Spec B and Y = Spec A. (=): Then set

Z = Spec Ox 5 N ﬂ D(t).
teB\ps

Since f is open, y' € f(D(t)) for all t € B\ p,. Set f; == f|p(). Then fr ' (y') # 0. For sake of
contradiction suppose that 3 ¢ f(Z). Then set g: Spec Ox , = X . ¥. Therefore
0=g7"(y") = Spec (Ox@aK(y)).

Thus
0=0x,®ak(y) = colimyep\p, Bt ®a k(y')
20

which is a contradiction.

(«<): Show f(X) C Y is open. By Chevalley’s theorem ([?], 10.70), the image f(X) is
constructible. In the noetherian case use that open is equivalent to constructible and stable
under generalizations ([?], 10.17). In the general case write A as a colimit of noetherian rings
and conclude by careful general nonsense. O

Lemma 1.22. Let f: X —» Y be flat, z € X, y = f(x), ¥ € Y a generalization of y. Then
there exists a generalization ' of x such that f(z') =y'.

Proof. Set A = Oy, B= 0Ox, and ¢: A — B. Since y € im(f) we have myB # B and B is
faithfully flat A-module (since ¢ is local and flat). Thus

0# B®ary),
ie. f71(y') N Spec B # 0. O

Corollary 1.23. Let f: X — Y be flat and locally of finite presentation. Then f is universally
open.

Proof. From 1.21 and 1.22 follows that flat and locally of finite presentation implies open. Since
the former two properties are stable under base change, the result follows. O

Corollary 1.24. Let f: X — S be locally of finite presentation. If |S| is discrete, then every
morphism X — S is universally open.

Definition 1.25. Let f: X — Y. We say
(i) fis flat in x € X if f#: Oy pz) = Ox,, is flat.
(ii) f is flat if f is flat in every point.

Example 1.26. (1) X — Spec k is flat.
(2) AY - Y and P¥ — Y are flat.

(3) Let f: Z — Y be a closed immersion. Then f is flat and locally of finite presentation if
and only if f is an open immersion.

Proposition 1.27. The following holds
(i) Spec B — Spec A is flat if and only if A — B is flat.
(ii) Flatness is stable under base change and composition.

(11i) Flatness is local on the source and the target.



8 CHAPTER 1. INTRODUCTION

(iv) Open immersions are flat.
(v) A morphism f: X —Y is flat if and only if for every y € Y the canonical morphism
X xy Spec(Ox ) — Spec(Oy,y)
1s flat.
Definition 1.28. A morphism f: X — Y is called faithfully flat if f is flat and surjective.
Example 1.29. Spec k — Spec k is faithfully flat.

Lemma 1.30. Let C be a category with equalizers, F: C — D a conservative (i.e. reflects
isomorphisms) functor that commutes with equalizers. Then F is faithful.

Proof. Left as an exercise to the reader. O
Proposition 1.31. Is f: X =Y faithfully flat, then f*: QCoh(Y) — QCoh(X) faithful.
Proof. Can be deduced from 1.30. The details are left to the reader. O

Remark 1.32 (Faithfully flat descent). The statement from 1.31 can be - from a carefully
selected viewpoint - viewn as the statement that the functor X +— QCoh(X) satisfies the sheaf
condition for faithfully flat and quasicompact morphisms, i.e. that the diagram

* pry
QCoh(Y) = QCoh(X) == QCoh(X xy X) ==  QCoh(X xy X xy X)
- corresponds to the cocycle condition
is a limit diagram.

Proposition 1.33 ([?], 14.53). Let f: X — Y be a S-morphism and g: S' — S faithfully flat
and quasicompact. Denote by f' = f xg S'. If f' is

(i) (locally) of finite type or (locally) of finite presentation,
(i) isomorphism / monomorphism,

(iii) open / closed / quasicompact immersion,

(iv) proper / affine / finite,

then f has the same property.

1.2 Regular Schemes over Fields

Remark 1.34. Coming from differential geometry, we have three notions of the tangent space
of a manifold M at a point x € M:

o I,M={a:(—¢,e) > M|e>0, a(0) =z} /change of charts
o T, M = Der(Op 4, R)
e T, M = Hom(m,/m2,R)

Remark 1.35. As a reminder: for a noetherian local ring (A, m) of dimension d, the following
are equivalent:

o gr (A) =X A/m[Ty,..., Ty,

o dimy y(m/m?) = d,
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e m has a generator set of d elements.

In this case, A is called regular.
A regular ring will always be an integral domain.

Definition 1.36. A locally noetherian scheme X is called regular in z € X if Ox , is a regular
noetherian local ring. Write

Xreg := {2 € X | X is regular in x} .

We call X regular if X,ee = X.
The tangent space of X in z is defined via

T, M := Hom,,,) (my/m2, k(x)).
Remark. If X is integral, then m, = 0 and thus 7;, X = 0.

Example 1.37. Let k be afield and f1,..., f € k[T1,...,Ty] polynomials. Set X = V(f1,...,f) C
A}. For x € A} (k) we have an isomorphism

n n — 89
E" = T,AL, (vi,...,0n) = (G Zvlﬁ(m))

The map k[Si1,...,S:] = k[T1,...,Ty], S; — T; induces morphisms f : A} — A} and df, :
T AL — Ty)Aj, which fits into the following diagram

T,AY Y25 Ty AT

F I

fr — I g,
Here J(f) denotes the Jacobian. Claim: T, X = ker(dfy).
Definition 1.38. Set k[e] = k[X]/(X?). For X/k and z € X (k) define X (k[¢]), as the pullback

X(kle])a —— X(k[e])

| |

Proposition 1.39. We have a bijection X (k[e]), =5 T, X which is functorial in (X, ).
Proof. Left as an exercise. O

Definition 1.40. Let f : X — Y be a morphism of schemes and d > 0. We call f smooth of
relative degree d in x € X if there exist neighbourhoods z € U C X open, f(z) € Spec(R) =
V C Y open affine as well as an n > 0 and polynomials f1,..., fn_q € R[T1,...,Ty,] such that

commutes and Jy, . ,(f) € My_gn(k(z)) is of full rank.
Call f smooth of relative degree d if this is the case everywhere.

1;"'afn—d))

Proposition 1.41 ([?],6.15).
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1. If f: X =Y is smooth in x € X, then f is smooth in an open neighbourhood of x.

2. Smoothness of relative dimension d is local on source and target. It is closed under base
change and composition (where in the latter degree is additive).

3. Open immersions are smooth of rel. dimension 0.

4. If f o g is smooth and g is unramified, then f is smooth.

Remark 1.42 (Relation to étale morphisms).
e ¢tale < flat, unramified and locally of finite presentation < smooth of rel. dim. 0.

e Let f: X — Y be of locally finite presentation. Then f is smooth of rel dim. d in x € X
if there exists a commutative diagram

étale d
reU AS

f(z) eV

Example 1.43. Let S be a scheme.
e The canonical morphisms A% — S and P§ — S are smooth of rel. dim. n.

e S = Spec(k), k C k, char(k) # 2, f € k[T], X = V(U? — f(T)) C A2 = Spec(K|[T,U]).
Then X is smooth iff f is separable.

e X = Spec(Z,[U,V]/(U* — V3 —p)) is regular, but X — Spec(Z,) is not smooth.

Lemma 1.44. Let X,Y be k-schemes and locally of finite type. Let x € X,y € Y be points and
¢:O0x 4 =N Oy,y an isomorphism of k-algebras.

Then there exist open neighbourhoodsx € U C X, y € V CY and an isomorphism f : U v
such that f(z) =y and f# = ¢~1.

Proposition 1.45. Let X/k be an integral scheme of finite type and dimension d, and let
K(X)/k be separable (to see what this is supposed to mean, have a look at the proof).
Then there exists an open and dense subset U C X and an isomorphism

U = Spec(k[T1,...,Ta,T]/(g9))

where g € k(T1,...,Tq)[T] is a separable irreducible monic polynomial with coefficients in k[T, ..., Ty.

Proof. Find Ty, ..., Ty € K(X) algebraically independent and such that

alg.& sep.
—

ks L:=k(Ty,...,Ty) K(X)

Write K (X) = L(«) and let g be the minimal polynomial of & over L. After suitable multliplications,
we can assume g € k[T4,...,T4)[T]. Then

Oxny=K(X)=K(E[T-1,...,T4[T]/(9)) = Oy,
and the proposition follows from Lemma 1.44. O

Proposition 1.46. Let () # X be geometrically reducible and locally of finite type over k.
Then X :={x € X | X — k is smooth in x} C X is open and dense.
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Proof. The openness was stated in Proposition 1.41. It suffices to show: for any irreducible
component Z of X there exists an () # U = Spec(A4) C X affine and open such that U C Z and
Usm = X¢m NU is dense in U.

X is locally noetherian, therefore X locally has only finitely many irreducible components.
Therefore, for U C Z open the set U \ |, (UNZ’) is open in X and wlog we can
assume X to be integral.

Using 1.45 and 1.18, we can assume X = Spec(k[T1,...,Tq4,T]/(g)) with g separable and

#Zirred. comp.

irreducible. Because g is separable, we have (% # 0. Since X is reduced, this implies that
Xm={zeX|Fe{l,... . d @}%(m) # 0} # () is non-empty and therefore dense. O

1.3 Group schemes over a field

Let k be a field and S = Speck.

Lemma 1.47. Let G be a group scheme over k. Then G — Speck is separated.

Proof. Let m: G — S the structure morphism. Then 7 is separated if and only if e: S — G
is a closed immersion. For any = € im(e) € G, choose an affine open neighbourhood z € U =
Spec A C G. Then 7|y o e = idg, hence the induced map A T,  has a section I'(7|y) and is

therefore surjective. Thus e is a closed immersion. O

Proposition 1.48. Let G be a group scheme locally of finite type over k. Then G is smooth
over k if and only if G is geometrically reduced.

Proof. The first direction is immediate, since smoothness is invariant under base change and
smooth over a field implies reduced. Conversely, for any field extension ¢/k by a prior result G
is smooth over k if and only if G is smooth over £. Thus we may assume k = k. By ?? and 77,
we obtain Gg,, # 0. By the transitive action of G(k) on G, every closed point is smooth. Since

Gy = {9 € G | dim{g} = 0}
is very dense in G and Gy C G is open, the result follows. O

Lemma 1.49. Let k be perfect and G a group scheme locally of finite type over k. Then the
induced reduced subscheme Gyeq s a subgroup scheme of G.

Proof. Since (—)req is a functor, we obtain i: Greq — Greq and e: S — Greq. By 77, reduced
is equivalent to geometrically reduced since k is perfect. Thus Greq X Greq is reduced and we
obtain

GG — 22— G
Gred Xk Gred ———-- > Gred

O

Corollary 1.50. If k is perfect and G a group scheme locally of finite type over k. Then Greq
is smooth over k.

Lemma 1.51. Let G be locally of finite type over k. Then G is geometrically irreducible if (and
only if) G is connected.

Proof. Since G(k) # 0, we have a morphism Spec k — G and Speck is geometrically connected.
Thus G is geometrically connected. We may therefore assume k = k. Since the statement is
purely topological, we may further assume that G is reduced and thus smooth over k. Hence G
is regular by 77, in particular for every g € G the local ring Og 4 is regular and hence an integral
domain. Since G is locally noetherian and connected, the claim follows. O
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Definition 1.52. An abelian variety over k is a connected, geometrically reduced and proper
k-group scheme.

Remark 1.53. Abelian varieties are smooth and geometrically integral.
Example 1.54. Elliptic curves are abelian varieties of dimension 1.
The goal is now to show that abelian varieties are commutative group schemes.

Lemma 1.55. Let X be a proper, geometrically connected and geometrically reduced k-scheme

and Y an affine k-scheme. Then every morphism X Ly factors over a k-valued point of Y.

Proof. By the Liouville theorem for schemes, the global sections of Ox, is k. Since k — k is flat,
we obtain

I'(X,0x) @k k — D(X;, Ox,).

Since k — k is even faithfully flat, we obtain I'(X, Ox) ~ k.

Choose an embedding ¥ — Ag)

xLyo A,(f), which is equivalent to the datum of a family of e; € T'(X, Ox) which corresponds

. Then a morphism f: X — Y is equivalent to a morphism

to a morphism Spec k = A,(f). Thus by construction we obtain a factorisation

x—t .y AD
Speck
where the dashed arrow is induced from the isomorphism I'(X, Ox) ~ k. O

Lemma 1.56 (Rigidity). Let X be a geometrically reduced, geometrically connected and proper
k-scheme with X (k) # (. Let further Y be an integral scheme over k, Z be a separated k-scheme
and f: X xp Y — Z a morphism such that there exists y € Y (k) such that f|x, factors via a
k-point z € Z(k). Then f factors via pry.

Proof. Consider the composition

9: X 5, Y 22y ~ Speck xp, Y 2 x o v Ly 7

where xg is an arbitrarily chosen k-rational point of X. It remains to show that f = g. Choose
an open affine neighbourhood z € U C Z. Then X, = pry H(y) € f~1(U). Since X is proper, pr,
is a closed map. Thus there exists a y € V C Y open with prgl(V) C f~YU). For any v/ €V,
we obtain

Xx, Y —L 57

J J

aly)]
U x k(y)

By 1.55, the morphism «(y’) factors over a x(y’)-valued point. Thus f and g agree on the dense
open subset X x; V. By reduced-to-separated, the result follows. O

Corollary 1.57. Let A and B be abelian varieties over k and f a morphism of k-schemes
A — B. If under the induced map f(k): A(k) — B(k) the identity e is mapped to ep.
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Proof. Consider the composition

LA (foma)x(ipomao(fxf))

g: Ax B x; B 2 B.

It remains to show that the image of g is precisely {ep}. By assumption f(es) = ep and thus

g({ea} xx A) = {ep} = g(A x3 {ea}).

By repeated application of 1.56, ¢g factors via pr; and pry. Thus g is constant and ep is in the
image. O

Corollary 1.58. FEvery abelian variety is commutative.

Proof. Apply 1.57 oni: A — A. O

Lemma 1.59. Let X be a connected scheme over k and Y a geometrically connected scheme
over k. If Homy (Y, X) # 0, then X is geometrically connected.

Proof. Use that X; — X is an open and closed immersion. Let () # Z C X}, be open and closed.
Consider the commutative diagram

FFU2)=Z xp Y —— YV —— Y

| b

A T X

We obtain fYZ) = Y;. Set Z/ = Y; \ Z. If Z' is not-empty, then by the same argument
f~1(Z') = Y;. Contradiction. O

Proposition 1.60. Let G be a group scheme locally of finite type over k.
1. If U,V C G are open and dense. Then UV = G as topological spaces.
2. If G is irreducible, then G is quasi-compact.
3. Any subgroupscheme H C G is a closed subscheme.

Proof. We reduce to k = k.

1. We know that G — G is an open and closed immersion. Taking pre-images then preserves
open and dense (??7?) and the result follows.

2. By 7?7 G is geometrically irreducible and Gj, — G is surjective, i.e. the quasi-compactness
of G implies the quasi-compactness of G. *

3. By 7?7, being a closed immersion can be tested by faithfully flat descent.
Now suppose k = k.

1. It suffices to show that U(k)V (k) = G(k), since U(k)V (k) is very dense in UV. Since
i: G — G is an isomorphism of schemes, V (k)~! C G(k) is open and dense. Thus for all
g € G, g(V(k)~') is open and dense. Thus there exists u € g(V(k)~!) N U(k), i.e. there
exists v € V (k) such that gv=! = u, i.e. g = uv.

2. Let U C G be open, dense and quasi-compact. Then U x U is quasi-compact and G =
im(U x; U — G) is quasi-compact.
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3. Put the induced reduced subscheme structure on ﬁ C G. By 7?7, the maps H — Speck
and H — Speck are universally open. Since H C H is dense, we obtain

kaHngkﬁQkaH

is dense. Since H x, H C m~'(H) € m~'(H) < G x G, we obtain topologically H x H C
m~1(H). Since the objects in the lower row are reduced, we therefore obtain a factorisation

GxG@ — G

J I

Thus H C G is a subgroupscheme. Thus H = H x H = H where the last equality follows
from 1.

O

Definition 1.61. Let G be a group scheme locally of finite type over k and e: Speck — G is
the unit. Then denote by G° the connected component of G that contains im(e). We call G° the
unit component of G.

Remark 1.62. Since G is locally noetherian, G is open and closed.
Proposition 1.63. Let G be a group scheme locally of finite type over k.
1. G° is a quasi-compact, geometrically-irreducible and normal subgroupscheme of G.

2. Any group morphism G — H with H locally of finite type over k induces a group homomorphism
G° — HO.

3. For any field extension £/k, we have

(G %, 0)° = GO x L.

Proof. 1. Since GV is connected and contains a k-rational point, by ?? G is geometrically
connected. Then Gy X Gy is connected and

Gx, G —— G

I I

Since G° — G % G factors over G° — G, GY is a subgroupscheme. By ??, G is
geometrically irreducible and therefore by 77 it is quasi-compact. For normality consider
a connected component G’ of G. Then we have a commutative diagram

-1
G x, GO o

J J

Since G’ x G is connected, the image of the upper horizontal arrow is in G°.

2. Any group homomorphism sends the identity to the identity, i.e. the composition G®
G — H factors via HY < H.
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3. Since G° is geometrically connected, the scheme G x, £ is connected. Moreover G® x, £ C
G xy, ¢ is open and closed. Finally, the identity of G' xj, £ is contained in G° x, ¢ by the
universal property of the fibre product.

O

The proof of the following lemma is left as an exercise to the reader.

Lemma 1.64. Let G be a group scheme locally of finite type over k. Then every connected
component of G is quasi-compact and geometrically irreducible and G is equidimensional.

Proposition 1.65. Let f: G — H be a group homomorphism of group schemes locally of finite
type over k. Then

1. im(f) C H is closed.
2. dim(G) = dim(im(f)) + dim(ker(f)).
3. Is H smooth over k and f surjective, then f is faithfully flat.

Remark 1.66. For any integral morphism f: X — Y and Z C X closed the image f(Z) is
closed in Y and dim(Z) = dim(f(Z2)).

Proof. Since Hy, = H is integral and surjective and dim(Z) = dim(w(Z)) for any closed subset
Z C Hg, we may assume k = k.

3. Since smooth implies reduced, H? is reduced and by ?? HY is irreducible. Thus H°
is integral. By generic flatness, we have a V C H©° that is open and dense such that

f~1(V) — V is flat. Thus for all h € H(k), the map f~1(hV) L hv s flat. By covering
H with translates of V', we obtain f is flat.

1. We may assume that G is reduced and thus G is smooth over k by ??7. Let C be Cieq =

——H
f(G) . We claim that C is a subgroupscheme of H. Then G — C' is quasi-compact and
dominant. Thus we have a factorisation

Gxp,G—— OCx, C —— Hx, H

o e
¢c—1 ¢ H
Analogously one obtains
C----- > C
[ D
H——H

Thus we may assume that f is dominant. By the theorem of Chevalley, f(G) is constructible
and is therefore dense. Hence there exists an open U C H such that U C f(G). Thus
H=U-UC f(G) and f(G) = H is closed.

2. We may assume that also H is reduced and that f(G) = H. Then H is smooth over k and f

is flat. By 77 we have f(G®) C H is open and by 1) also closed. Thus G° ENY (PN surjective.
We have dim(G%) = dim(G), dim(H®) = dim(H) and dim(ker(f°)) = dim(ker(f)?).
Now the result follows since all fibres are isomorphic and dimension is additive under
flat morphism in non-empty fibres ([?] 14.119).

O

Lemma 1.67. Let X/k be of locally finite type. Then X, is constructible.
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Proof. WLOG X is affine. Then the assertion follows from B53, B72c and OCG13Z. O

Proposition 1.68. If f : X — Y is a morphism of schemes and |Y| is discrete, then f is
universally open. (cf. Corollary 7?)

Proof. Universal openness is local on the target, therefore wlog #Y = 1. Since, in addition,
universal openness is a topological condition, we can assume Y to be reduced. Therefore let
Y = Speck for k a field.

Let Y/ — Y be arbitrary. Since openness is local on the domain, assume X = Spec A;
Y’ = Spec B and therefore X xy Y’ = Spec A ®; B. Write A = colim,, A, as colimit over the
finitely generated subalgebras A, C A. Then

A ®y B = colim, (4, & B).

Let t € B and denote by f’ the base change of f. We show that U = f'(D(t)) is open in
Spec B. Let t € A, ®y B for suitable a. Applying Corollary 1.23 shows that f” : Spec A, @k B —
Spec B is open. Therefore U’ = f”(D(t)) C Spec B is open, so it suffices to check U = U".

We have U C U” by assumption.Let y € U’. It suffices to show

(f)7 )N D) #0.

But (f)~! = g~H(W) with g : (')~ (y) = Spec(B' @5 £(y)), (f")"*(y) = Spec(Aa ®y, £(y)) and
W = (f")"1(y) N D(t). Since x(y)/k is flat, we have an injection A, ®j, k(y) — A, @ £(y) and
g is dominant. This implies g~(W) # 0, since W is open and non empty. O

1.4 Differentials and Smoothness

Definition 1.69. A — B, M € B-Mod. Define
Der4(B, M) = {D € operatornameHom (B, M) | D(Fg) = fD(g) + ¢D(f) Vf,g9 € B}.
The module of Kéhler differentials of B/A is a pair (Q}g/AadB/A) with Q}B/A € B-Mod,dp/a €
Der4(B,Qp,,) such that dp/a . : Homp(Qp, 4, M) =, Der (B, M) is an isomorphism.
Lemma 1.70. For A — B, we have
d(bb') = dbdb’ + b'db
Q0 = @ dvB/( b € BacA).
B/A b@ Na+ vy =db+db', da=0 ¢

The universal differential dg;a is given by b — [db]. For I = ker(B ®4 B — B), we have an
isomorphism -
Qpa = I/17, [db] —»1@b-b@1.

Proof. This formal calculation. O
Example 1.71. 1. Let B = A[T1,...,T]. Then Qp , = @;_, dT;B.
2. Let L/K be an separable extension. Then QlL/K =0.

Lemma 1.72. Let A’, B be A-algebras and S C A multiplicatively closed. Then we have
5*19}3/14 =S~ 1B/A and Q'B/A®p B' = Q'B'/A’.

Lemma 1.73. f: A— B,g: B — C. Then we have an exact sequence
Qp/a®8C = Qs = Qg =0

of C-modules. If g is surjective with kernel I, the sequence
I/I? = Qp,y @3 C = Qg iy =0

s exact.



1.4. DIFFERENTIALS AND SMOOTHNESS 17

Example 1‘74‘ Let A be a I'il’lg and B = A[Tla L) 7Tn}/(f1, .o 7f’n) Then
n
0% 4 2 @dTB/df; |i=1,...,n),
=1

where df; =), %Tk.

closed open
e

Definition 1.75. Let 7 : Y — X be an immersion Y U —— X and I the associated

ideal sheaf. Then define wy,x = I/I? as an Oy-module.
For f: X — S the module of K&hler differentials is given by

Q)5 = wx/X x5 X
with A: X — X xg X.

Remark 1.76. X — S mono implies Qk/s =0.

Proposition 1.77. 1. For X i> Y — S we have an exact sequence
Qs = x5 = Uy = 0.
2. Given X — S «+ Y, we have an isomorphism
*Ql o *Ql o Ql
Di1itx)s ©P2ityys XxsY -

, closed
3. Given Z =% X — S, we have

wzyy = Qs = Qg = 0.

4. If X — S 1is of locally finite type, then Q%(/S s of finite presentation.

Proposition 1.78 ([?], 18.64). Let k be a field, X/k of locally finite type and x € X.
Then X is smooth in X iff Qﬁ(/s is a free Ox o-module of dimension dim X .

Proposition 1.79. Let X' = X xg xS’ be cartesian. Then there exists a canonical isomorphism
W s = Qg
Proof. exercise sheet numero sei O

Proposition 1.80. Let m: G — S be a group scheme with unit e € G(S). Then there are the
following isomorphisms of Og-modules

1 ~ ok k)l ~ %

Qgs=me’ Qg g =T ws/g -
——
via e

Proof. First, consider the cartesian diagram

GxsG "2+ @G

| gr

G ———

for i = 1,2. It yields
m* Qg s = Vs sare = 0i%ys -
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Consider also i = (em,idg) : G — G xg G. Then
Qla/s ~idg, Qé:/s = i*pSQé/S = i*m*Qé/S = i*prlg/S = (67‘(‘)*916/5 = W*B*Qé/s.
Secondly, consider the diagram of sections

S —— G

(e il

G —5 GxsG,

where i = (em,idg). We deduce e*Qé/S =~ w, and 7* yields W*e*QE/S = 7w, O

1.5 Functor of points

Reference: Demargue-Gabriel: Groups algebraiguexue
We want to define quotient group schemes. For scheme S, S-subgroup H — G we want a
short exact sequence
0—-H(T)— GT)— (G/H)(T) — 0.

But the presheaf G/H is not generally a sheaf.
As an ansatz, consider the yoneda embedding

y : Schg < PSh(Schg) .

Grothendieck showed: the fpgc-topology is subcanonical, ie. presentable presheaves are sheaves
in the fpqc-topology. Therefore, it may be useful to consider the fppf-sheafification of (T' —
G(T)/H(T)). (why fppf and not fpqc: later)

Remark 1.81. Let be:
LRS = category of locally ringed spaces
Sch = category of schemes
Aff = category of affine schemes
All of these are full subcats of each other.
For
y : Schg < PSh(Schg),

our goal is to consider the essential image of y without reference to Schg

Remark 1.82 (Ansatz). Schemes are build from affine schemes through glueing on open immersions,
i.e. every scheme is a colimit (coequalizer) of affine schemes and open immersions

H Spec(B; ;)= HSpec(AZ-) —X.
i€l keJ i€l

Example 1.83. For scheme X and open subschemes U,V C X with U UV = X the canonical
map

y(U) Oyowy y(V) = y(X)

is not generally an isomorphism in PSh(Sch) for W =UNV.
But after sheafification a : PSh(Sch) — Sh(Sch) we get two isomorphisms (since presheaves
are reflective subcat of sheaves)

a(y(U) Wywy y(V)) = a(y(U)) Lagywy) aly(V)) = a(y(X)) = y(X).
Question: What is an open immersion between affine schemes?

Proposition 1.84. Let f: X — Y be a morphism of schemes. TFAE (?)
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(i) f is open immersion,
(i1) f is étale,
(iti) f is flat mono of locally finite presentation.

Remark 1.85. A family {Spec(4;) — Spec(A)};cr of open immersions is an open covering iff
it can be verfeinert by an open covering of the form {Spec(Ay, ) — Spec(A)}o. TFAE

1. {Spec(Ay,) — Spec(A)}q is an open covering,

2. A— 1], Ay, is faithfully flat,

3. (1)=(fa]a) CA

Sh(Sch) ~ Sh(Aff) and there we only need open immersions:

Remark 1.86. Following the preceding remark, we have the sites Aff%* of affine schmes with
zariksi topology.

The restriction PSh(Sch) — PSh(Aff) induces an equivalence of cats Sh(Sch) — Sh(Aff) by
the comparison lemma. A quasi inverse is given by

F—F:Xw— lim F(SpecA).
Spec A—X

The essential image of
Sch <% Shya:(Sch) “— Shya, (AfF)

consists exactly of those sheaves that can be written as coequalizer of a diagram of the form

H Spec(Aijr) 2 H Spec A;

i,k i
The problem is to check whether something is or is not a sheaf in Shz,, (Aff).

Remark 1.87. Let PSh denote PSh(Aff) = Fun(CRing, Set) and Aff = im(y : CRing®® — PSh).
Set S(R) := y(R) as an "affine scheme".
For A ring, X € PSh, p € X(A) we have

p?:S(A) = X

in PSh via S(A)(R) = X(R),¢ — X(¢)(R).
A subfunctor U < X in PSh is an equivalence class of monos in PSh.

When is a subfunctor an open immersion? "Open immersion" is local on target, so we can
check this on open coverings by affine schemes. These are of the shortly following form

Remark 1.88. For an ideal I C A we have decompostion V(I) — Spec(A) < D(I). For
ringmorphism ¢ : A — R have

Therefore

factorizes iff ¢(I) - R = R.
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Definition 1.89. e For ideal I C A define subfunctor S(A4); C S(A4) via
S(A)1(R).={¢: A= R|¢(I)-R= R}

(by the above lemma, these are precisely the points which come from the open subscheme
D(I))

e An open subfunctor is a subfunctor U < X such that for every morphism S(A4) — X the
projection map from the (pointwise) fibre product U x x S(A) to a subfunctor of the form
S(A)r is an isomorphism for a suitable ideal I C A.

Example 1.90. For p # ¢ prime numbers we have X = SpecZ = D(p) U D(q). But
X(z) 2 D(p)(Z) U D(q)(Z),
since both sets on the right are empty.

So this isn’t quite right either. Maybe fields?

Definition 1.91. e A family (U; — X);cr of open immersions in PSh is an open covering,
if for every field k we have

X(k) = JUi(k).

i€l
(here we could replace "field" by "local ring". The idea is that "points" are specs of fields,
and we shouldnt require these covering conditions for all objects, just for points)

e For ring A a partition of unity is given by a finite family (f;, z;) with f;, x; € A such that
Z fizi=1.
i

In this case (S(A)(s,))icr is an open covering of S(A).

e A presheaf X € PSh is local (ie. it is a sheaf) if for all A € CRing and all partitions of
unity in A the induced diagram

X(A) = [LX(Ag) =3 1L X(Afif)

is a limit-diagram.
e A scheme is a local presheaf that allows an open covering by affine schemes.
Remark 1.92. An open subfunctor of a scheme is a scheme.

Remark 1.93. e Let X = (|]X],Ox) be an locally ringed space. Obtain S(X) € PSh with
S(X)(R) = Homprs(Spec(R), X)

e For U C X open S(U) C S(X) open subfunctor.
e A covering X = J;c; Ur yields an open covering (S(U;)); of S(X).
Proposition 1.94. A locally ringed space X is a scheme iff S(X) is a scheme.
Remark 1.95. The Vorschrift X — S(X) defines a functor LRS — PSh that has a left adjoint.
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§7 fppf-topology and algebraic spaces

Let S be a scheme and Schg the category of S-Schemes. We have the following problem. Given
an S-group scheme G and an S-sub-group-scheme H the quotient G/H may not exist in the
category of S-schemes.

We remedy this by forming the quotient in a larger category, namely the category of algberaic
spaces or fppf-sheaves, and then study conditions under which the constructed quotient lives in
Schs.

Remark 1.96. Given a scheme S we have the following topologies on Schg
Zariski C étale C fppf C fpqc.

Theorem 1.97 (Grothendieck, 023Q) Stacks). Let S be a scheme. Then the representable
homgern(—, S) is a fpgc-sheaf.

Remark 1.98. o If G/H as above is a scheme its yoneda image must be an fpqc-sheaf.
e However sheafification does not work for fpgc-presheaves.

Definition 1.99. We call a family of morphisms {f; : X; — X} of schemes an fppf-covering iff
1) f; are flat and of finite presentation Vi and
2) they are jointly surjective, i.e. X =, fi(X;).

Remark 1.100. A prescheaf F : Schd’ — Grp is an fppf-sheaf iff the associated set-valued
presheaf is an fppf-sheaf, since the forgetful functor from groups to sets commutes with limits
(as it has an adjoint).

Exactness of a sequence of sheaves can be checked just as for topological spaces

Remark 1.101. Let 7 be a topology on the site Schg. And let 0 — ' — G — H be a sequence
of sheaves with values in abelian groups/modules/. ... It is exact iff

1) for all X € Schg the sequence 0 — F(X) — G(X) — H(X) is exact and

2) For all X € Schg and all h € H(X) there is a covering {X; — X} s.t. h|x, is in the image

Example 1.102. Let n > 1 be an integer. The sequence 0 — pp,,5 = Gy 5 (3 Gum,s is an
exact sequence of presheaves on Schg. If n € Og(S)*, then (=)™ is surjective w.r.t. to the étale
topology on Schg. If n ¢ Og(S)* then (—)™ is not surjective w.r.t. the étale topology but w.r.t.
the fppf-topology on Schg.

Let C be any category. We denote by y : C — PSh(C), X — y(X) = hom¢(—, X) the yoneda
embedding.

Definition 1.103. (i) Let F,G € PSh(Schg). We call a morphism F' — G representable iff
for all X € Schg and all morphisms y(X) — G the fibre product F'x cy(X) is representable.

(ii) Let furthermore P be a property of morphisms of schemes which is closed under pre- and
postcomoposition with isomorphisms. We say that a representable morphism F' — G has
P iff for all X € Schg and all y(X) — G the morphism of schemes corresponding to

Fxgy(X) — y(X)

has the property P.
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Remark 1.104. Note that in the second part of the above definition the object F x¢ y(X) is
representable s.t. the definition becomes meaningful.

Remark 1.105. Representable morphisms are closed under composition and base change. A
representable morphism with representable target has representable source, because: Let FF — G
be representable, G = y(X). Then for id : y(X) — y(X) the object F'x& G = F is representable.

Lemma 1.106. Let F' € PSh(Schg). Then we have
A: F — F xg F representable <= VX € Schg : every morphism y(X) — F is representable.

Proof. =: Let y(X) — F and y(Y) — F be given as in the definition. The diagram

Yy(X) xpy(Y) — y(X) xsy(Y) =y(X xsY)

| |

F FxgF

is cartesian. So the upper map is representable with representable target. So the term y(X) x g
y(Y) is representable.

<: Let y(X) — F xg F. We claim

F xpusr y(X) = y(X) Xyx)xsyx) W(X) xp y(X)).

By assumption the term y(X) x p y(X) is representable and since then every term on the RHS is
representable so is the left term. So it remains to show the claim. For this consider the diagram
(we omit the yoneda embedding from the notation)

X Xxxsx (X xpX) — X xp X — F

| | |

X — s XxgX — FxgF

Both little square are cartesian. Thus, the outer square is cartesian which shows the claim. [

Definition 1.107. An algebraic space (over S) is a sheaf X € PSh(Schg) with respect to the
fppf-topology s.t.

i) X — X xg X is representable and

ii) There exists an S-scheme U and a morphism y(U) — X which is surjective in the étale
topology.

From this we obtain the full subcategory AlgSpcs C Shyppr(Schs).

Remark 1.108. The category of algebraice spaces is closed under fibre products in PSh(Schg)
(what does this mean?)

Lemma 1.109. Let Y € AlgSpcs and X — Y representable. Then X € AlgSpcs.
Proof. The proof of this was not given completely. O
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