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Chapter 1

Introduction

Literature: Görtz-Wedhorn: Algebraic Geometry I and II
The goal of this lecture is a brief introduction to the theory of group schemes.

Definition 1.1 (Group object). Let C be a category with finite products. A group object in C
is the data (G,m, e, i) where

• G is an object of C

• m : G×G→ G is the multiplication map

• e : 1→ G is the unit

• i : G→ G is the inversion map

such that the following diagrams commute

G×G×G G×G

G×G G

m×id

id×m m

m

,

G×G G

G× 1

m

id×e and
G G×G

1 G

id×i

m

e

.

G is called commutative, if additionally the diagram

G×G G×G

G

m

swap

m

commutes.
A morphism of group objects (G,m, e, i)→ (G′,m′, e′, i′) is a morphism f : G→ G′ in C such

that the diagrams

G×G G′ ×G′

G G′

f×f

m m′

f

,
G G′

1

f

e
e′

and
G G′

G G′

i

f

i′

f

.

This defines the category Grp(C) of group objects in C.

Example 1.2. • Grp(Set) ≃ Grp

• Grp(Grp) ≃ Ab

• Grp(Ab) ≃?

3



4 CHAPTER 1. INTRODUCTION

• Grp(Top) ≃ topological Groups

• Grp(Mfd∞) ≃ Lie Groups

Definition 1.3 (group scheme). Let S be a scheme. An S-group scheme or an S-group is a
group object in the category of schemes over S.

Remark 1.4. Let S be a scheme. The structure of a group scheme over S on a S-scheme G is
equivalent to a factorisation of the functor of points

SchS Set

Grp

via the forgetful functor from groups to sets.

Example 1.5. Let S be a scheme.

(i) Let Γ be a group. Then G = ΓS where G(T ) := { locally constant maps T → Γ }

(ii) (additive group) Ga,S where Ga,S(T ) = OT (T ). We have Ga,S ≃ A1
S .

(iii) (multiplicative group) Gm,S where Gm,S(T ) := OT (T )
×.

(iv) (roots of unity) µn,S (n ≥ 1) where µn,S(T ) = {x ∈ OT (T )
× | xn = 1}.

(v) S = Spec(R). GLn,R = Spec(A) where A = R[Tij | 1 ≤ i, j ≤ n][det−1] where det =∑
σ∈Sn

sgn(σ)T1σ(1) · · ·Tnσ(n). We obtain GLn,S by base changing GLn,Z.

Lemma 1.6. Let G be a S-group. Then G → S is separated if and only if S e−→ G is a closed
immersion.

Definition 1.7. Let R be a ring. A (commutative) Hopf-Algebra over R is a group object in
Algop

R , where AlgR = CRingR.

Remark 1.8. For a R-Hopf-Algebra A, we denote the canonical maps by

• µ : A→ A⊗R A (Comultiplication)

• ε : A→ R (Counit)

• ι : A→ A (Antipode)

A Hopf-Algebra is called cocommutative, if the associated group object in Algop
R kommutativ ist.

Remark 1.9. For a ring R, by construction we have an equivalence of categories between the
category of affine R-group schemes and the opposite category of R-Hopf-Algebras.

Example 1.10. The additive group Ga,R = Spec(R[t]) has

• comultiplication µ : R[t]→ R[t]⊗R R[t], t 7→ t⊗ 1− 1⊗ t.

• counit ε : R[t]→ R, t 7→ 0

• antipode ι : R[t]→ R[t], t 7→ −t

Proof. For any R-algebra A we have Ga,R(A) = A and the diagram

Ga,R(A)×Ga,R(A) Ga,R(A)

HomR(R[s1, s2], A) HomR(R[t], A)

m

≃ ≃

µ∗

.
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Definition 1.11. Let G be a S-group. A subgroupscheme of G is a subscheme H ⊆ G such that

1) for all T ∈ SchS , we have H(T ) ⊆ G(T ) a subgroup,

2) We have commutative diagrams

H ×S H G×S G G

H

m

and
S G

H

e

A subgroup scheme H ⊆ G is normal if H(T ) is a normal subgroup of G(T ) for all T ∈ SchS .
For a morphism f : G → G′ of S-groups and a subgroup H ′ ⊆ G′, let f−1(H ′) be G ×′

G H.
For H ′ = 1

e−→ G′, we obtain the kernel of f and the cartesian square

Ker(f) G

S G′

f

e

.

Remark 1.12. The kernel of a homomorphism f of S-groups is for any S-scheme T given by

Ker(f)(T ) = ker (f(T )) .

In particular, the Ker(f) is normal.

Definition 1.13. Let G be a S-group, T a S-scheme and g ∈ G(T ) = HomS(T,G). Define the
lefttranslation by g as

GT T ×T GT

GT GT ×T GT

tg

=

g×id

m

.

Remark 1.14. In the situation of 1.13, for every T ′ f−→ T , the map

tg(T
′) : GT (T

′) = G(T ′) −→ G(T ′) = GT (T
′)

is the lefttranslation by the element f∗(g) ∈ G(T ′).

Remark 1.15. Consider
G×S G G×S G

G

m

(g,h)7→(gh,h)

pr1

.

Let P be a property of morphisms stable under base change and composition with isomorphisms.
Then whenever G→ S satisfies P, then m satisfies P.
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1.1 Useful statements on schemes

Let k be a field.

Definition 1.16. Let P be a property of schemes over fields. For a k-scheme X we say X is
geometrically P if for all field extensions K/k the base change XK → SpecK is P.

Example 1.17. The R-scheme X = Spec
(
R[x]/(x2 + 1)

)
is irreducible but not geometrically

irreducible.

Proposition 1.18. For a k-scheme X the following are equivalent:

(i) X is geometrically reduced

(ii) for every reduced k-scheme Y , the fibre product X ×k Y is reduced.

(iii) X is reduced and for every generic point η ∈ X of an irreducible component of X, the field
extension κ(η)/k is separable.

(iv) There exists a perfect field Ω and an extension Ω/k such that XΩ is reduced.

(v) For all finite and purely inseparable field extensions K/k, the base change XK is reduced.

Proof. Reducedness is a local property, so without loss of generality X = Spec A. Moreover
we may assume that X itself is reduced. Let {ηi}i∈I be the set of generic points of irreducible
components of X. Then we obtain an inclusion

A ↪→
∏
i∈I

κ(ηi)︸ ︷︷ ︸
=S−1

i A

.

We claim that for any field extension L/k the ring A⊗k L is reduced if and only if for all i ∈ I
the ring κ(ηi)⊗k L is reduced.

proof of the claim. (⇒): follows since forming the nilradical commutes with localisations. (⇐):
We have

A⊗k L ↪→

(∏
i∈I

κ(ηi)

)
⊗k L ↪→

∏
i∈I

κ(ηi)⊗k L.

The claim immediatly implies the equivalence of (iii), (iv), (v) and (1). Since (ii) trivially
implies (i). It remains to show that (iii) implies (2). Without loss of generality we may take
Y = Spec B and set {λj}j∈J to be the generic points of Y . Then we obtain

A⊗k B ↪→ A⊗k

∏
j∈J

κ(λj)

 ↪→

(∏
i∈I

κ(ηi)

)
⊗k

∏
j∈J

κ(λj)

 ↪→
∏
i,j

κ(ηi)⊗k κ(ηj)︸ ︷︷ ︸
reduced

.

Corollary 1.19. If k is perfect, then reduced and geometrically reduced are equivalent.

Remark 1.20. The statements in 1.18 also hold when reduced is replaced by irreducible or
integral.

Proposition 1.21. Let f : X → Y be a morphism of schemes that is locally of finite presentation.
Then f is open if and only if for every point x ∈ X and every point y′ ∈ Y with y = f(x) ∈ {y′}
there exists x′ ∈ X with x ∈ {x′} such that f(x′) = y′.
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Proof. Assume X = Spec B and Y = Spec A. (⇒): Then set

Z := Spec OX,x ∩
⋂

t∈B\px

D(t).

Since f is open, y′ ∈ f(D(t)) for all t ∈ B \ px. Set ft := f |D(t). Then f−1
t (y′) ̸= ∅. For sake of

contradiction suppose that y′ ̸∈ f(Z). Then set g : Spec OX,x → X
f−→ Y . Therefore

∅ = g−1(y′) = Spec (OX,x ⊗A κ(y′)) .

Thus
0 = OX,x ⊗A κ(y′) = colimt∈B\px

Bt ⊗A κ(y′)︸ ︷︷ ︸
̸=0

which is a contradiction.
(⇐): Show f(X) ⊆ Y is open. By Chevalley’s theorem ([?], 10.70), the image f(X) is

constructible. In the noetherian case use that open is equivalent to constructible and stable
under generalizations ([?], 10.17). In the general case write A as a colimit of noetherian rings
and conclude by careful general nonsense.

Lemma 1.22. Let f : X → Y be flat, x ∈ X, y = f(x), y′ ∈ Y a generalization of y. Then
there exists a generalization x′ of x such that f(x′) = y′.

Proof. Set A = OY,y, B = OX,x and φ : A → B. Since y ∈ im(f) we have myB ̸= B and B is
faithfully flat A-module (since φ is local and flat). Thus

0 ̸= B ⊗A κ(y′),

i.e. f−1(y′) ∩ Spec B ̸= ∅.

Corollary 1.23. Let f : X → Y be flat and locally of finite presentation. Then f is universally
open.

Proof. From 1.21 and 1.22 follows that flat and locally of finite presentation implies open. Since
the former two properties are stable under base change, the result follows.

Corollary 1.24. Let f : X → S be locally of finite presentation. If |S| is discrete, then every
morphism X → S is universally open.

Definition 1.25. Let f : X → Y . We say

(i) f is flat in x ∈ X if f#
x : OY,f(x) → OX,x is flat.

(ii) f is flat if f is flat in every point.

Example 1.26. (1) X → Spec k is flat.

(2) An
Y → Y and Pn

Y → Y are flat.

(3) Let f : Z ↪→ Y be a closed immersion. Then f is flat and locally of finite presentation if
and only if f is an open immersion.

Proposition 1.27. The following holds

(i) Spec B → Spec A is flat if and only if A→ B is flat.

(ii) Flatness is stable under base change and composition.

(iii) Flatness is local on the source and the target.
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(iv) Open immersions are flat.

(v) A morphism f : X → Y is flat if and only if for every y ∈ Y the canonical morphism

X ×Y Spec(OX,y)→ Spec(OY,y)

is flat.

Definition 1.28. A morphism f : X → Y is called faithfully flat if f is flat and surjective.

Example 1.29. Spec k → Spec k is faithfully flat.

Lemma 1.30. Let C be a category with equalizers, F : C → D a conservative (i.e. reflects
isomorphisms) functor that commutes with equalizers. Then F is faithful.

Proof. Left as an exercise to the reader.

Proposition 1.31. Is f : X → Y faithfully flat, then f∗ : QCoh(Y )→ QCoh(X) faithful.

Proof. Can be deduced from 1.30. The details are left to the reader.

Remark 1.32 (Faithfully flat descent). The statement from 1.31 can be - from a carefully
selected viewpoint - viewn as the statement that the functor X 7→ QCoh(X) satisfies the sheaf
condition for faithfully flat and quasicompact morphisms, i.e. that the diagram

QCoh(Y ) QCoh(X) QCoh(X ×Y X) QCoh(X ×Y X ×Y X)︸ ︷︷ ︸
corresponds to the cocycle condition

f∗ pr∗1

pr∗2

is a limit diagram.

Proposition 1.33 ([?], 14.53). Let f : X → Y be a S-morphism and g : S′ → S faithfully flat
and quasicompact. Denote by f ′ = f ×S S′. If f ′ is

(i) (locally) of finite type or (locally) of finite presentation,

(ii) isomorphism / monomorphism,

(iii) open / closed / quasicompact immersion,

(iv) proper / affine / finite,

then f has the same property.

1.2 Regular Schemes over Fields

Remark 1.34. Coming from differential geometry, we have three notions of the tangent space
of a manifold M at a point x ∈M :

• TxM = {α : (−ε, ε)→M | ε > 0, α(0) = x}/change of charts

• TxM = Der(OM,x,R)

• TxM = Hom(mx/m
2
x,R)

Remark 1.35. As a reminder: for a noetherian local ring (A,m) of dimension d, the following
are equivalent:

• grm(A) ∼= A/m[T1, . . . , Td],

• dimA/m(m/m2) = d,
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• m has a generator set of d elements.

In this case, A is called regular.
A regular ring will always be an integral domain.

Definition 1.36. A locally noetherian scheme X is called regular in x ∈ X if OX,x is a regular
noetherian local ring. Write

Xreg := {x ∈ X | X is regular in x} .

We call X regular if Xreg = X.
The tangent space of X in x is defined via

TxM := Homκ(x)(mx/m
2
x, κ(x)) .

Remark. If X is integral, then mη = 0 and thus TηX = 0.

Example 1.37. Let k be a field and f1, . . . , fr ∈ k[T1, . . . , Tn] polynomials. Set X = V (f1, . . . , fr) ⊆
An

k . For x ∈ An
k (k) we have an isomorphism

kn → TxAn
k , (v1, . . . , vn) 7→ (g 7→

∑
i

vi
∂g

∂Ti
(x)) .

The map k[S1, . . . , Sr] → k[T1, . . . , Tn], Si 7→ Ti induces morphisms f : An
k → Ar

k and dfx :
TxAn

k → Tf(x)Ar
k which fits into the following diagram

TxAn
k Tf(x)Ar

k

kn kr.

∼=

dfx

∼=
·J(f)

Here J(f) denotes the Jacobian. Claim: TxX = ker(dfx).

Definition 1.38. Set k[ε] = k[X]/(X2). For X/k and x ∈ X(k) define X(k[ε])x as the pullback

X(k[ε])x X(k[ε])

{x} X(k).

Proposition 1.39. We have a bijection X(k[ε])x
∼=−→ TxX which is functorial in (X,x).

Proof. Left as an exercise.

Definition 1.40. Let f : X → Y be a morphism of schemes and d ≥ 0. We call f smooth of
relative degree d in x ∈ X if there exist neighbourhoods x ∈ U ⊆ X open, f(x) ∈ Spec(R) =
V ⊆ Y open affine as well as an n ≥ 0 and polynomials f1, . . . , fn−d ∈ R[T1, . . . , Tn] such that

U Spec(R[T1, . . . , Tn]/(f1, . . . , fn−d))

V

f

open

commutes and Jf1,...,fn−d
(f) ∈Mn−d,n(κ(x)) is of full rank.

Call f smooth of relative degree d if this is the case everywhere.

Proposition 1.41 ([?],6.15).
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1. If f : X → Y is smooth in x ∈ X, then f is smooth in an open neighbourhood of x.

2. Smoothness of relative dimension d is local on source and target. It is closed under base
change and composition (where in the latter degree is additive).

3. Open immersions are smooth of rel. dimension 0.

4. If f ◦ g is smooth and g is unramified, then f is smooth.

Remark 1.42 (Relation to étale morphisms).

• étale ⇔ flat, unramified and locally of finite presentation ⇔ smooth of rel. dim. 0.

• Let f : X → Y be of locally finite presentation. Then f is smooth of rel dim. d in x ∈ X
if there exists a commutative diagram

x ∈ U Ad
V

f(x) ∈ V.

étale

f

Example 1.43. Let S be a scheme.

• The canonical morphisms An
S → S and Pn

S → S are smooth of rel. dim. n.

• S = Spec(k), k ⊆ k, char(k) ̸= 2, f ∈ k[T ], X = V (U2 − f(T )) ⊆ A2
k = Spec(K[T,U ]).

Then X is smooth iff f is separable.

• X = Spec(Zp[U, V ]/(U2 − V 3 − p)) is regular, but X → Spec(Zp) is not smooth.

Lemma 1.44. Let X,Y be k-schemes and locally of finite type. Let x ∈ X, y ∈ Y be points and
ϕ : OX,x

∼=−→ OY,y an isomorphism of k-algebras.
Then there exist open neighbourhoods x ∈ U ⊆ X, y ∈ V ⊆ Y and an isomorphism f : U

∼=−→ V
such that f(x) = y and f#

x = ϕ−1.

Proposition 1.45. Let X/k be an integral scheme of finite type and dimension d, and let
K(X)/k be separable (to see what this is supposed to mean, have a look at the proof).

Then there exists an open and dense subset U ⊆ X and an isomorphism

U ∼= Spec(k[T1, . . . , Td, T ]/(g))

where g ∈ k(T1, . . . , Td)[T ] is a separable irreducible monic polynomial with coefficients in k[T1, . . . , Td].

Proof. Find T1, . . . , Td ∈ K(X) algebraically independent and such that

k ↪→ L := k(T1, . . . , Td)
alg.& sep.
↪−−−−−−→ K(X)

Write K(X) = L(α) and let g be the minimal polynomial of α over L. After suitable multliplications,
we can assume g ∈ k[T1, . . . , Td][T ]. Then

OX,η = K(X) ∼= K(k[T − 1, . . . , Td][T ]/(g)) = OY,(0)

and the proposition follows from Lemma 1.44.

Proposition 1.46. Let ∅ ≠ X be geometrically reducible and locally of finite type over k.
Then Xsm := {x ∈ X | X → k is smooth in x} ⊆ X is open and dense.



1.3. GROUP SCHEMES OVER A FIELD 11

Proof. The openness was stated in Proposition 1.41. It suffices to show: for any irreducible
component Z of X there exists an ∅ ≠ U = Spec(A) ⊆ X affine and open such that U ⊆ Z and
Usm = Xsm ∩ U is dense in U .

X is locally noetherian, therefore X locally has only finitely many irreducible components.
Therefore, for U ⊂ Z open the set U \

⋃
Z′ ̸=Zirred. comp.(U ∩ Z ′) is open in X and wlog we can

assume X to be integral.
Using 1.45 and 1.18, we can assume X = Spec(k[T1, . . . , Td, T ]/(g)) with g separable and

irreducible. Because g is separable, we have ∂g
∂T ̸= 0. Since X is reduced, this implies that

Xsm = {x ∈ X | ∃i ∈ {1, . . . , d, ∅} ∂g
∂Ti

(x) ̸= 0} ≠ ∅ is non-empty and therefore dense.

1.3 Group schemes over a field

Let k be a field and S = Spec k.

Lemma 1.47. Let G be a group scheme over k. Then G→ Spec k is separated.

Proof. Let π : G → S the structure morphism. Then π is separated if and only if e : S → G
is a closed immersion. For any x ∈ im(e) ∈ G, choose an affine open neighbourhood x ∈ U =

SpecA ⊆ G. Then π|U ◦ e = idS , hence the induced map A
Γ(e)−−−→ k has a section Γ(π|U ) and is

therefore surjective. Thus e is a closed immersion.

Proposition 1.48. Let G be a group scheme locally of finite type over k. Then G is smooth
over k if and only if G is geometrically reduced.

Proof. The first direction is immediate, since smoothness is invariant under base change and
smooth over a field implies reduced. Conversely, for any field extension ℓ/k by a prior result G
is smooth over k if and only if G is smooth over ℓ. Thus we may assume k = k̄. By ?? and ??,
we obtain Gsm ̸= ∅. By the transitive action of G(k) on G, every closed point is smooth. Since

G(0) = {g ∈ G | dim{g} = 0}

is very dense in G and Gsm ⊆ G is open, the result follows.

Lemma 1.49. Let k be perfect and G a group scheme locally of finite type over k. Then the
induced reduced subscheme Gred is a subgroup scheme of G.

Proof. Since (−)red is a functor, we obtain i : Gred → Gred and e : S → Gred. By ??, reduced
is equivalent to geometrically reduced since k is perfect. Thus Gred ×k Gred is reduced and we
obtain

GxkG G

Gred ×k Gred Gred

m

.

Corollary 1.50. If k is perfect and G a group scheme locally of finite type over k. Then Gred

is smooth over k.

Lemma 1.51. Let G be locally of finite type over k. Then G is geometrically irreducible if (and
only if) G is connected.

Proof. Since G(k) ̸= ∅, we have a morphism Spec k → G and Spec k is geometrically connected.
Thus G is geometrically connected. We may therefore assume k = k̄. Since the statement is
purely topological, we may further assume that G is reduced and thus smooth over k. Hence G
is regular by ??, in particular for every g ∈ G the local ring OG,g is regular and hence an integral
domain. Since G is locally noetherian and connected, the claim follows.
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Definition 1.52. An abelian variety over k is a connected, geometrically reduced and proper
k-group scheme.

Remark 1.53. Abelian varieties are smooth and geometrically integral.

Example 1.54. Elliptic curves are abelian varieties of dimension 1.

The goal is now to show that abelian varieties are commutative group schemes.

Lemma 1.55. Let X be a proper, geometrically connected and geometrically reduced k-scheme
and Y an affine k-scheme. Then every morphism X

f−→ Y factors over a k-valued point of Y .

Proof. By the Liouville theorem for schemes, the global sections of OXk̄
is k̄. Since k → k̄ is flat,

we obtain
Γ(X,OX)⊗k k̄

≃−→ Γ(Xk̄,OXk̄
).

Since k → k̄ is even faithfully flat, we obtain Γ(X,OX) ≃ k.
Choose an embedding Y ↪→ A(I)

k . Then a morphism f : X → Y is equivalent to a morphism

X
f−→ Y ↪→ A(I)

k , which is equivalent to the datum of a family of ei ∈ Γ(X,OX) which corresponds
to a morphism Spec k

e−→ A(I)
k . Thus by construction we obtain a factorisation

X Y A(I)

Spec k

f

where the dashed arrow is induced from the isomorphism Γ(X,OX) ≃ k.

Lemma 1.56 (Rigidity). Let X be a geometrically reduced, geometrically connected and proper
k-scheme with X(k) ̸= ∅. Let further Y be an integral scheme over k, Z be a separated k-scheme
and f : X ×k Y → Z a morphism such that there exists y ∈ Y (k) such that f |Xy

factors via a
k-point z ∈ Z(k). Then f factors via pr2.

Proof. Consider the composition

g : X ×k Y
pr2−−→ Y ≃ Spec k ×k Y

(x0,id)−−−−→ X ×k Y
f−→ Z

where x0 is an arbitrarily chosen k-rational point of X. It remains to show that f = g. Choose
an open affine neighbourhood z ∈ U ⊆ Z. Then Xy = pr−1

2 (y) ⊆ f−1(U). Since X is proper, pr2
is a closed map. Thus there exists a y ∈ V ⊆ Y open with pr−1

2 (V ) ⊆ f−1(U). For any y′ ∈ V ,
we obtain

X ×k Y Z

Xy′ U

U ×k κ(y′)

f

α(y′)

.

By 1.55, the morphism α(y′) factors over a κ(y′)-valued point. Thus f and g agree on the dense
open subset X ×k V . By reduced-to-separated, the result follows.

Corollary 1.57. Let A and B be abelian varieties over k and f a morphism of k-schemes
A→ B. If under the induced map f(k) : A(k)→ B(k) the identity eA is mapped to eB.
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Proof. Consider the composition

g : A×k A
(f◦mA)×(iB◦mA◦(f×f))−−−−−−−−−−−−−−−−→ B ×k B

mB−−→ B.

It remains to show that the image of g is precisely {eB}. By assumption f(eA) = eB and thus

g({eA} ×k A) = {eB} = g(A×k {eA}).

By repeated application of 1.56, g factors via pr1 and pr2. Thus g is constant and eB is in the
image.

Corollary 1.58. Every abelian variety is commutative.

Proof. Apply 1.57 on i : A→ A.

Lemma 1.59. Let X be a connected scheme over k and Y a geometrically connected scheme
over k. If Homk(Y,X) ̸= ∅, then X is geometrically connected.

Proof. Use that Xk̄ → X is an open and closed immersion. Let ∅ ≠ Z ⊆ Xk̄ be open and closed.
Consider the commutative diagram

f̄−1(Z) = Z ×k Y Yk̄ Y

Z Xk̄ X

f̄ f

π

.

We obtain f̄−1(Z) = Yk̄. Set Z ′ = Yk̄ \ Z. If Z ′ is not-empty, then by the same argument
f̄−1(Z ′) = Yk̄. Contradiction.

Proposition 1.60. Let G be a group scheme locally of finite type over k.

1. If U, V ⊆ G are open and dense. Then UV = G as topological spaces.

2. If G is irreducible, then G is quasi-compact.

3. Any subgroupscheme H ⊆ G is a closed subscheme.

Proof. We reduce to k = k̄.

1. We know that Gk̄ → G is an open and closed immersion. Taking pre-images then preserves
open and dense (???) and the result follows.

2. By ?? G is geometrically irreducible and Gk̄ → G is surjective, i.e. the quasi-compactness
of Gk̄ implies the quasi-compactness of G. ´

3. By ??, being a closed immersion can be tested by faithfully flat descent.

Now suppose k = k̄.

1. It suffices to show that U(k)V (k) = G(k), since U(k)V (k) is very dense in UV . Since
i : G → G is an isomorphism of schemes, V (k)−1 ⊆ G(k) is open and dense. Thus for all
g ∈ G, g(V (k)−1) is open and dense. Thus there exists u ∈ g(V (k)−1) ∩ U(k), i.e. there
exists v ∈ V (k) such that gv−1 = u, i.e. g = uv.

2. Let U ⊆ G be open, dense and quasi-compact. Then U ×k U is quasi-compact and G =
im(U ×k U → G) is quasi-compact.
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3. Put the induced reduced subscheme structure on H̄ ⊆ G. By ??, the maps H → Spec k
and H̄ → Spec k are universally open. Since H ⊆ H̄ is dense, we obtain

H ×k H ⊆ H ×k H̄ ⊆ H̄ ×k H̄

is dense. Since H ×k H ⊆ m−1(H) ⊆ m−1(H̄) ↪→ G×G, we obtain topologically H̄ × H̄ ⊆
m−1(H̄). Since the objects in the lower row are reduced, we therefore obtain a factorisation

G×G G

H̄ ×k H̄ H̄

.

Thus H̄ ⊆ G is a subgroupscheme. Thus H = H ×H = H̄ where the last equality follows
from 1.

Definition 1.61. Let G be a group scheme locally of finite type over k and e : Spec k → G is
the unit. Then denote by G0 the connected component of G that contains im(e). We call G0 the
unit component of G.

Remark 1.62. Since G is locally noetherian, G0 is open and closed.

Proposition 1.63. Let G be a group scheme locally of finite type over k.

1. G0 is a quasi-compact, geometrically-irreducible and normal subgroupscheme of G.

2. Any group morphism G→ H with H locally of finite type over k induces a group homomorphism
G0 → H0.

3. For any field extension ℓ/k, we have

(G×k ℓ)0 = G0 ×k ℓ.

Proof. 1. Since G0 is connected and contains a k-rational point, by ?? G0 is geometrically
connected. Then G0 ×k G0 is connected and

G×k G G

G0 ×k G0 G0

.

Since G0 ↪→ G
i−→ G factors over G0 ↪→ G, G0 is a subgroupscheme. By ??, G0 is

geometrically irreducible and therefore by ?? it is quasi-compact. For normality consider
a connected component G′ of G. Then we have a commutative diagram

G×k G0 G

G′ ×k G0 G0

(g,h)7→ghg−1

.

Since G′ ×G0 is connected, the image of the upper horizontal arrow is in G0.

2. Any group homomorphism sends the identity to the identity, i.e. the composition G0 ↪→
G→ H factors via H0 ↪→ H.
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3. Since G0 is geometrically connected, the scheme G0×k ℓ is connected. Moreover G0×k ℓ ⊆
G ×k ℓ is open and closed. Finally, the identity of G ×k ℓ is contained in G0 ×k ℓ by the
universal property of the fibre product.

The proof of the following lemma is left as an exercise to the reader.

Lemma 1.64. Let G be a group scheme locally of finite type over k. Then every connected
component of G is quasi-compact and geometrically irreducible and G is equidimensional.

Proposition 1.65. Let f : G→ H be a group homomorphism of group schemes locally of finite
type over k. Then

1. im(f) ⊆ H is closed.

2. dim(G) = dim(im(f)) + dim(ker(f)).

3. Is H smooth over k and f surjective, then f is faithfully flat.

Remark 1.66. For any integral morphism f : X → Y and Z ⊆ X closed the image f(Z) is
closed in Y and dim(Z) = dim(f(Z)).

Proof. Since Hk̄
π−→ H is integral and surjective and dim(Z) = dim(π(Z)) for any closed subset

Z ⊆ Hk̄, we may assume k = k̄.

3. Since smooth implies reduced, H0 is reduced and by ?? H0 is irreducible. Thus H0

is integral. By generic flatness, we have a V ⊆ H0 that is open and dense such that
f−1(V ) → V is flat. Thus for all h ∈ H(k), the map f−1(hV )

f−→ hV is flat. By covering
H with translates of V , we obtain f is flat.

1. We may assume that G is reduced and thus G is smooth over k by ??. Let C be Cred =

f(G)
H

. We claim that C is a subgroupscheme of H. Then G → C is quasi-compact and
dominant. Thus we have a factorisation

G×k G C ×k C H ×k H

G C H

mG mC mH

f

.

Analogously one obtains
C C

H H

.

Thus we may assume that f is dominant. By the theorem of Chevalley, f(G) is constructible
and is therefore dense. Hence there exists an open U ⊆ H such that U ⊆ f(G). Thus
H = U · U ⊆ f(G) and f(G) = H is closed.

2. We may assume that also H is reduced and that f(G) = H. Then H is smooth over k and f

is flat. By ?? we have f(G0) ⊆ H is open and by 1) also closed. Thus G0 f−→ H0 is surjective.
We have dim(G0) = dim(G), dim(H0) = dim(H) and dim(ker(f0)) = dim(ker(f)0).
Now the result follows since all fibres are isomorphic and dimension is additive under
flat morphism in non-empty fibres ([?] 14.119).

Lemma 1.67. Let X/k be of locally finite type. Then Xsm is constructible.
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Proof. WLOG X is affine. Then the assertion follows from B53, B72c and OCG13Z.

Proposition 1.68. If f : X → Y is a morphism of schemes and |Y | is discrete, then f is
universally open. (cf. Corollary ??)

Proof. Universal openness is local on the target, therefore wlog #Y = 1. Since, in addition,
universal openness is a topological condition, we can assume Y to be reduced. Therefore let
Y = Spec k for k a field.

Let Y ′ → Y be arbitrary. Since openness is local on the domain, assume X = SpecA;
Y ′ = SpecB and therefore X ×Y Y ′ = SpecA ⊗k B. Write A = colimα Aα as colimit over the
finitely generated subalgebras Aα ⊆ A. Then

A⊗k B = colimα(Aα ⊗k B) .

Let t ∈ B and denote by f ′ the base change of f . We show that U = f ′(D(t)) is open in
SpecB. Let t ∈ Aα⊗kB for suitable α. Applying Corollary 1.23 shows that f ′′ : SpecAα⊗kB →
SpecB is open. Therefore U ′ = f ′′(D(t)) ⊆ SpecB is open, so it suffices to check U = U ′.

We have U ⊆ U ′′ by assumption.Let y ∈ U ′. It suffices to show

(f ′)−1(y) ∩D(t) ̸= ∅ .

But (f ′)−1 = g−1(W ) with g : (f ′)−1(y) = Spec(B′⊗B κ(y)), (f ′′)−1(y) = Spec(Aα⊗k κ(y)) and
W = (f ′′)−1(y)∩D(t). Since κ(y)/k is flat, we have an injection Aα ⊗k κ(y) ↪→ Aα ⊗k κ(y) and
g is dominant. This implies g−1(W ) ̸= ∅, since W is open and non empty.

1.4 Differentials and Smoothness

Definition 1.69. A→ B, M ∈ B -Mod. Define

DerA(B,M) = {D ∈ operatornameHomA(B,M) | D(Fg) = fD(g) + gD(f) ∀f, g ∈ B} .

The module of Kähler differentials of B/A is a pair (Ω1
B/A, dB/A) with Ω1

B/A ∈ B -Mod, dB/A ∈
DerA(B,Ω1

B/A) such that dB/A,∗ : HomB(Ω
1
B/A,M)

∼=−→ DerA(B,M) is an isomorphism.

Lemma 1.70. For A→ B, we have

Ω1
B/A
∼=
⊕
b∈B

dbB/
〈 d(bb′) = dbdb′ + b′db

d(b+ b′) = db+ db′ , da = 0
| b, b′ ∈ B, a ∈ A

〉
.

The universal differential dB/A is given by b 7→ [db]. For I = ker(B ⊗A B → B), we have an
isomorphism

Ω1
B/A → I/I2 , [db] 7→ 1⊗ b− b⊗ 1 .

Proof. This formal calculation.

Example 1.71. 1. Let B = A[T1, . . . , Tn]. Then Ω1
B/A =

⊕n
i=1 dTiB.

2. Let L/K be an separable extension. Then Ω1
L/K = 0.

Lemma 1.72. Let A′, B be A-algebras and S ⊆ A multiplicatively closed. Then we have
S−1Ω1

B/A = Ω1S−1B/A and Ω1B/A⊗B B′ = Ω1B′/A′.

Lemma 1.73. f : A→ B, g : B → C. Then we have an exact sequence

Ω1
B/A ⊗B C → Ω1

C/A → Ω1
C/B → 0

of C-modules. If g is surjective with kernel I, the sequence

I/I2 → Ω1
B/A ⊗B C → Ω1

C/A → 0

is exact.
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Example 1.74. Let A be a ring and B = A[T1, . . . , Tn]/(f1, . . . , fn). Then

Ω1
B/A
∼=

n⊕
i=1

dTiB/⟨dfi | i = 1, . . . , n⟩ ,

where dfi =
∑

k
∂fi
∂Tk

Tk.

Definition 1.75. Let i : Y ↪→ X be an immersion Y
closed−−−−→ U

open−−−→ X and I the associated
ideal sheaf. Then define ωY/X = I/I2 as an OY -module.

For f : X → S the module of Kähler differentials is given by

Ω1
X/S := ωX/X ×S X

with ∆ : X → X ×S X.

Remark 1.76. X → S mono implies Ω1
X/S = 0.

Proposition 1.77. 1. For X
f−→ Y → S we have an exact sequence

f∗Ω1
Y/S → Ω1

X/S → Ω1
X/Y → 0 .

2. Given X → S ← Y , we have an isomorphism

p∗1Ω
1
X/S ⊕ p∗2Ω

1
Y/S
∼= Ω1

X×SY .

3. Given Z
closed−−−−→ X → S, we have

ωZ/Y → i∗Ω1
X/S → Ω1

Z/S → 0 .

4. If X → S is of locally finite type, then Ω1
X/S is of finite presentation.

Proposition 1.78 ([?], 18.64). Let k be a field, X/k of locally finite type and x ∈ X.
Then X is smooth in X iff Ω1

X/S is a free OX,x-module of dimension dimX.

Proposition 1.79. Let X ′ = X×S×S′ be cartesian. Then there exists a canonical isomorphism

h∗Ω1
X/S

∼=−→ Ω1
X/S .

Proof. exercise sheet numero sei

Proposition 1.80. Let π : G → S be a group scheme with unit e ∈ G(S). Then there are the
following isomorphisms of OG-modules

Ω1
G/S
∼= π∗e∗Ω1

G/S
∼= π∗ ωS/G︸ ︷︷ ︸

via e

.

Proof. First, consider the cartesian diagram

G×S G G

G S

m

pi π

π

for i = 1, 2. It yields
m∗Ω1

G/S
∼= Ω1

G×SG/G
∼= p∗iΩ

1
G/S .
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Consider also i = (eπ, idG) : G→ G×S G. Then

Ω1
G/S
∼= id∗G Ω1

G/S = i∗p∗2Ω
1
G/S = i∗m∗Ω1

G/S = i∗p∗1Ω
1
G/S = (eπ)∗Ω1

G/S = π∗e∗Ω1
G/S .

Secondly, consider the diagram of sections

S G

G G×S G ,

e

e

∆
π

i

p1

where i = (eπ, idG). We deduce e∗Ω1
G/S
∼= ωe and π∗ yields π∗e∗Ω1

G/S
∼= π∗ωe.

1.5 Functor of points

Reference: Demargue-Gabriel: Groups algebraiguexue
We want to define quotient group schemes. For scheme S, S-subgroup H ↪→ G we want a

short exact sequence
0→ H(T )→ G(T )→ (G/H)(T )→ 0 .

But the presheaf G/H is not generally a sheaf.
As an ansatz, consider the yoneda embedding

y : SchS ↪→ PSh(SchS) .

Grothendieck showed: the fpqc-topology is subcanonical, ie. presentable presheaves are sheaves
in the fpqc-topology. Therefore, it may be useful to consider the fppf-sheafification of (T 7→
G(T )/H(T )). (why fppf and not fpqc: later)

Remark 1.81. Let be:
LRS = category of locally ringed spaces
Sch = category of schemes
Aff = category of affine schemes
All of these are full subcats of each other.
For

y : SchS ↪→ PSh(SchS) ,

our goal is to consider the essential image of y without reference to SchS

Remark 1.82 (Ansatz). Schemes are build from affine schemes through glueing on open immersions,
i.e. every scheme is a colimit (coequalizer) of affine schemes and open immersions∐

i,j∈I k∈J

Spec(Bi,j)→→
∐
i∈I

Spec(Ai)→ X .

Example 1.83. For scheme X and open subschemes U, V ⊆ X with U ∪ V = X the canonical
map

y(U)⨿y(W ) y(V )→ y(X)

is not generally an isomorphism in PSh(Sch) for W = U ∩ V .
But after sheafification a : PSh(Sch) → Sh(Sch) we get two isomorphisms (since presheaves

are reflective subcat of sheaves)

a(y(U)⨿y(W ) y(V ))→ a(y(U))⨿a(y(W )) a(y(V ))→ a(y(X)) = y(X) .

Question: What is an open immersion between affine schemes?

Proposition 1.84. Let f : X → Y be a morphism of schemes. TFAE (?)
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(i) f is open immersion,

(ii) f is étale,

(iii) f is flat mono of locally finite presentation.

Remark 1.85. A family {Spec(Ai) → Spec(A)}i∈I of open immersions is an open covering iff
it can be verfeinert by an open covering of the form {Spec(Afα)→ Spec(A)}α. TFAE

1. {Spec(Afα)→ Spec(A)}α is an open covering,

2. A→
∏

α Afα is faithfully flat,

3. (1) = (fα | α) ⊆ A.

Sh(Sch) ≃ Sh(Aff) and there we only need open immersions:

Remark 1.86. Following the preceding remark, we have the sites AffZar of affine schmes with
zariksi topology.

The restriction PSh(Sch) → PSh(Aff) induces an equivalence of cats Sh(Sch) → Sh(Aff) by
the comparison lemma. A quasi inverse is given by

F 7→ F̂ : X 7→ lim
SpecA→X

F (SpecA) .

The essential image of
Sch

y
↪−→ ShZar(Sch)

i∗−→ ShZar(Aff)

consists exactly of those sheaves that can be written as coequalizer of a diagram of the form∐
i,j,k

Spec(Aijk)→→
∐
i

SpecAi

The problem is to check whether something is or is not a sheaf in ShZar(Aff).

Remark 1.87. Let PSh denote PSh(Aff) = Fun(CRing,Set) and Aff = im(y : CRingop → PSh).
Set S(R) := y(R) as an "affine scheme".

For A ring, X ∈ PSh, p ∈ X(A) we have

p# : S(A)→ X

in PSh via S(A)(R)→ X(R), ϕ 7→ X(ϕ)(R).
A subfunctor U ↪→ X in PSh is an equivalence class of monos in PSh.

When is a subfunctor an open immersion? "Open immersion" is local on target, so we can
check this on open coverings by affine schemes. These are of the shortly following form

Remark 1.88. For an ideal I ⊆ A we have decompostion V (I) → Spec(A) ← D(I). For
ringmorphism ϕ : A→ R have

Spec(ϕ)−1(D(I) = D(ϕ(I) ·R)) .

Therefore
Spec(R) Spec(A)

D(I)

∃!

factorizes iff ϕ(I) ·R = R.
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Definition 1.89. • For ideal I ⊆ A define subfunctor S(A)I ⊆ S(A) via

S(A)I(R). = {ϕ : A→ R | ϕ(I) ·R = R}

(by the above lemma, these are precisely the points which come from the open subscheme
D(I))

• An open subfunctor is a subfunctor U ↪→ X such that for every morphism S(A)→ X the
projection map from the (pointwise) fibre product U ×X S(A) to a subfunctor of the form
S(A)I is an isomorphism for a suitable ideal I ⊆ A.

Example 1.90. For p ̸= q prime numbers we have X = SpecZ = D(p) ∪D(q). But

X(Z) ⊋ D(p)(Z) ∪D(q)(Z) ,

since both sets on the right are empty.

So this isn’t quite right either. Maybe fields?

Definition 1.91. • A family (Ui ↪→ X)i∈I of open immersions in PSh is an open covering,
if for every field k we have

X(k) =
⋃
i∈I

Ui(k) .

(here we could replace "field" by "local ring". The idea is that "points" are specs of fields,
and we shouldnt require these covering conditions for all objects, just for points)

• For ring A a partition of unity is given by a finite family (fi, xi) with fi, xi ∈ A such that∑
i

fixi = 1 .

In this case (S(A)(fi))i∈I is an open covering of S(A).

• A presheaf X ∈ PSh is local (ie. it is a sheaf ) if for all A ∈ CRing and all partitions of
unity in A the induced diagram

X(A)→
∏

i X(Afi)→
→ ∏

i,j X(Afifj)

is a limit-diagram.

• A scheme is a local presheaf that allows an open covering by affine schemes.

Remark 1.92. An open subfunctor of a scheme is a scheme.

Remark 1.93. • Let X = (|X|,OX) be an locally ringed space. Obtain S(X) ∈ PSh with
S(X)(R) = HomLRS(Spec(R), X)

• For U ⊆ X open S(U) ⊆ S(X) open subfunctor.

• A covering X =
⋃

i∈I UI yields an open covering (S(Ui))i of S(X).

Proposition 1.94. A locally ringed space X is a scheme iff S(X) is a scheme.

Remark 1.95. The Vorschrift X 7→ S(X) defines a functor LRS→ PSh that has a left adjoint.
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§7 fppf-topology and algebraic spaces

Let S be a scheme and SchS the category of S-Schemes. We have the following problem. Given
an S-group scheme G and an S-sub-group-scheme H the quotient G/H may not exist in the
category of S-schemes.
We remedy this by forming the quotient in a larger category, namely the category of algberaic
spaces or fppf-sheaves, and then study conditions under which the constructed quotient lives in
SchS .

Remark 1.96. Given a scheme S we have the following topologies on SchS

Zariski ⊂ étale ⊂ fppf ⊂ fpqc.

Theorem 1.97 (Grothendieck, 023Q Stacks). Let S be a scheme. Then the representable
homSch(−, S) is a fpqc-sheaf.

Remark 1.98. • If G/H as above is a scheme its yoneda image must be an fpqc-sheaf.

• However sheafification does not work for fpqc-presheaves.

Definition 1.99. We call a family of morphisms {fi : Xi → X} of schemes an fppf-covering iff

1) fi are flat and of finite presentation ∀i and

2) they are jointly surjective, i.e. X =
⋃

i fi(Xi).

Remark 1.100. A preseheaf F : Schop
S → Grp is an fppf-sheaf iff the associated set-valued

presheaf is an fppf-sheaf, since the forgetful functor from groups to sets commutes with limits
(as it has an adjoint).

Exactness of a sequence of sheaves can be checked just as for topological spaces

Remark 1.101. Let τ be a topology on the site SchS . And let 0→ F → G→ H be a sequence
of sheaves with values in abelian groups/modules/. . . . It is exact iff

1) for all X ∈ SchS the sequence 0→ F (X)→ G(X)→ H(X) is exact and

2) For all X ∈ SchS and all h ∈ H(X) there is a covering {Xi → X} s.t. h|Xi
is in the image

of G(Xi)→ H(Xi).

Example 1.102. Let n ≥ 1 be an integer. The sequence 0 → µn,S → Gm,S
(−)n→ Gm,S is an

exact sequence of presheaves on SchS . If n ∈ OS(S)
×, then (−)n is surjective w.r.t. to the étale

topology on SchS . If n /∈ OS(S)
× then (−)n is not surjective w.r.t. the étale topology but w.r.t.

the fppf-topology on SchS .

Let C be any category. We denote by y : C → PSh(C), X 7→ y(X) = homC(−, X) the yoneda
embedding.

Definition 1.103. (i) Let F,G ∈ PSh(SchS). We call a morphism F → G representable iff
for all X ∈ SchS and all morphisms y(X)→ G the fibre product F×Gy(X) is representable.

(ii) Let furthermore P be a property of morphisms of schemes which is closed under pre- and
postcomoposition with isomorphisms. We say that a representable morphism F → G has
P iff for all X ∈ SchS and all y(X)→ G the morphism of schemes corresponding to

F ×G y(X)→ y(X)

has the property P.
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Remark 1.104. Note that in the second part of the above definition the object F ×G y(X) is
representable s.t. the definition becomes meaningful.

Remark 1.105. Representable morphisms are closed under composition and base change. A
representable morphism with representable target has representable source, because: Let F → G
be representable, G = y(X). Then for id : y(X)→ y(X) the object F ×GG = F is representable.

Lemma 1.106. Let F ∈ PSh(SchS). Then we have

∆ : F → F ×S F representable ⇐⇒ ∀X ∈ SchS : every morphism y(X)→ F is representable.

Proof. ⇒: Let y(X)→ F and y(Y )→ F be given as in the definition. The diagram

y(X)×F y(Y ) y(X)×S y(Y ) = y(X ×S Y )

F F ×S F

is cartesian. So the upper map is representable with representable target. So the term y(X)×F

y(Y ) is representable.

⇐: Let y(X)→ F ×S F . We claim

F ×F×SF y(X) = y(X)×y(X)×Sy(X) (y(X)×F y(X)).

By assumption the term y(X)×F y(X) is representable and since then every term on the RHS is
representable so is the left term. So it remains to show the claim. For this consider the diagram
(we omit the yoneda embedding from the notation)

X ×X×SX (X ×F X) X ×F X F

X X ×S X F ×S F.

Both little square are cartesian. Thus, the outer square is cartesian which shows the claim.

Definition 1.107. An algebraic space (over S) is a sheaf X ∈ PSh(SchS) with respect to the
fppf-topology s.t.

i) X → X ×S X is representable and

ii) There exists an S-scheme U and a morphism y(U) → X which is surjective in the étale
topology.

From this we obtain the full subcategory AlgSpcS ⊂ Shfppf (SchS).

Remark 1.108. The category of algebraice spaces is closed under fibre products in PSh(SchS)
(what does this mean?)

Lemma 1.109. Let Y ∈ AlgSpcS and X → Y representable. Then X ∈ AlgSpcS.

Proof. The proof of this was not given completely.
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